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Abstract. Using the Monte Carlo technique the phase diagram of dilute king anti- 
ferromagnets in a field is found to be non-universal. Depending on the values of both the 
dilution and ratio of next-nearest- to nearest-neighbour interactions, the transition from the 
disordered phase as a function of the field can either be always continuous, or first order with 
a tricritical point. A new probabilistic mean-field theory which reproduces the qualitative 
featuresofMonte Carlo simulationsis also presented. Experimental results are thusexpected 
to depend on the nature of the specific materials used. 

1. Introduction 

The random field Ising model (RFIM) has been quite challenging for both theorists and 
experimentalists over the last decade. After a long period of controversy, the existence 
of long range order in three dimensions has been established by a rigorous work [ 11 thus 
confirming an earlier domain-wall argument [2] in favour of a lower critical dimension 

The nature of the global phase diagram associated to three-dimensional random field 
systems is not yet well understood. Monte Carlo (MC) results of the d = 3 RFIM with a 
bimodal distribution were interpreted in support of a first-order transition even at very 
low fields [3], thus excluding a tricritical point, in contrast with mean field results [4]. 
Nevertheless, these MC results [3] have been also discussed as being consistent with a 
continuous transition, providing dynamical effects are included [5].  

Experimentally, random fields are obtained by applying a uniform field on dilute 
antiferromagnets [6]. Substitutional site disorder is the most usual experimental situation 
[7]. However, the rapid increase of the equilibrium time when the transition is 
approached from above makes it difficult to achieve equilibrium experimentally [8]. 
These difficulties have been explained by the formation of domains and pinning in the 
RFIM [9]. 

In parallel, MC simulations of a three-dimensional dilute Ising antiferromagnet with 
nearest-neighbour (NN) interactions in a field [lo] suggested a continuous transition even 
for strong fields at a concentrationp = 0.3 of non-magnetic sites. In contrast, recent MC 
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studies of the same model at a concentrationp = 0.2 found a tricritical point by including 
next-nearest-neighbour (NNN) interactions for a ratio a = -0.5 of NNN to” interactions 

In this paper we present for the first time a systematic investigation of the phase 
diagram of dilute Ising antiferromagnets in a uniform field as function of both dilution 
and ratio of NNN to NN interactions on a cubic lattice. The inclusion of both NN and 
NNN makes the model closer to experimental random-field systems. The order of the 
transition from the disordered phase is found to be non-universal: the phase diagram 
depends strongly on the values of p and a. We find a tricritical point in the range of 
dilution 0 < p  0.3 for a ratio a = -0.5. The tricritical point moves towards lower 
temperatures and weaker fields with increasing p ,  thus making the first-order region 
shrink. On the other hand, we show that increasing a enlarges the first-order region. To 
discuss these results we present a new probabilistic treatment which yields the correct 
qualitative features of the phase diagram. This approach justifies qualitatively a recent 
prediction [12] of a tricritical point with ap-dependence for dilute Ising systems. 

[ I l l .  

2. Monte Carlo results 

We consider the following Hamiltonian 

where J > 0 is taken as unit of energy, a is the ratio of NNN to NN and H is the applied 
uniform magnetic field. The Ising spins Si take the values +1 except at a concentration 
p of lattice sites where they are zero. These vacant sites are chosen at random. The first 
two sums in equation (1) are performed over all NN and NNN pairs, respectively, while 
the last sum is performed over all occupied lattice sites. 

We have carried out extensive MC simulations with different simple cubic lattice 
samples of size N = 203. Finite size effects have been studied for one case (p = 0.2, a = 
-0.5) [ l l ] .  The periodic boundary conditions have been imposed throughout. The MC 
technique used here is the single-spin flipping procedure where in each run we discard 
asufficient number of MC steps (MCS) per spin to equilibrate the system before averaging 
physical quantities over a number of Mcs/spin. The two following procedures have been 
used in our simulations: (i) applying H on the antiferromagnetic (AF) and ferromagnetic 
(F) initial spin configurations at a given temperature T; (ii) heating or cooling the system 
at a given field H .  The choice of the former or the latter procedure depends on the 
trajectory followed in the simulation with respect to the critical line in the THplane. The 
first procedure is convenient at high values of H while the second one is more suitable 
at low values of H .  The use of AF and F configurations as initial conditions helps to 
stabilise the system more rapidly than the use of random initial configurations. The AF 
is one of the ground states of the system when Hdoes not exceed the critical value H , ( p )  
given by H , ( p )  = (1 - p ) H ,  where H ,  = 6 for simple cubic structures. The F state on the 
other hand is the stable configuration at high temperatures in a non-zero field. In 
addition, at each concentrationp we used different samples to make sure that the results 
are independent of vacant site distributions. In some cases (large values of p ) ,  up to 10 
samples have been used. 

In order to determine the nature of the phase transition we detect the hysteresis upon 
applying H with AF and F initial spin configurations or upon heating and cooling the 



Phase diagrams of dilute Ising antiferromagnets 5475 

1.0 -.--I- -I- 4- -x -  -U- -“\- .”- -*- 

Figure 1. Staggered magnetisation m,, versus H 
for p = 0.2 and (Y = -0.6 at T =  2.5 (broken 
curve) and T =  3.5 (full curve). X and 0, T =  
2.5 using AF and F initial spin configurations, 
respectively; + and 0, T =  3.5, using AF and F, 
respectively. 
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system. The existence of a hysteresis, which is not due to insufficient equilibrium time 
and of discontinuities in internal energy and staggered magnetisation mean that the 
transition is first-order, otherwise it is second-order. There are, however, some dif- 
ficulties in the distinction between first- and second-order transitions in the tricritical 
region due to the following reasons: (i) in the MC procedure physical quantities are time- 
and space-averaged so that discontinuities associated with first-order transitions may be 
washed away and the results show features similar to those of a continuous transition; 
(ii) the finite size effects may round-up a first-order transition so that small samples 
which are too small are not useful; (iii) in addition, the position of a first-order critical 
point may change drastically with increasing sample size as it has been observed in the 
AF FCC Ising model [13]. These difficulties in analysing MC data in first-order transitions 
hdve been thoroughly discussed by Challa and co-workers [ 141 and Binder and Landau 
[ 141 (for works on finite-size scaling of first-order transitions see references cited in these 
papers). In view of these problems, the phase diagram shown in this paper should be 
read qualitatively. 

Before showing our MC results we now discuss the equilibrium time. When the 
dilution becomes important, the time needed for equilibrating the system increases 
considerably near the transition. In previous MC studies with NN interactions only [3, lo], 
equilibrium times of order lo6 Mcs/spin have been used. However it is not our purpose 
here to determine each critical point and its associated critical exponents with high 
accuracy. Our aim is to show that a cross-over from first- to second-order transition 
exists and to study its dependence on p and a. At most we used 4 x lo4 Mcs/spin, half 
of which have been discarded for equilibrating. We have verified in each run that 
there is no significant time-dependence of the physical quantities. However, the above 
simulation time is not enough when p becomes larger than 0.3. The study of the case 
p > 0.3 is left to future work. 

We show in figure 1 the staggered magnetisation m,, versus H for p = 0.2 and a = 
-0.6 at T = 2.5 and T = 3.5 as typical examples of first- and second-order transitions, 
respectively. The system equilibrium can be seen by observing that both AF and F initial 
spin configurations yield the same result above and below the transitions within statistical 
errors. No attempt has been made to determine the transition point to high accuracy by 
taking smaller intervals between successive values of H ,  since this is beyond the scope 
of this work. For a first-order transition we take arbitrarily the transition point at the 
middle of the hysteresis cycle. For a second-order transition, the transition point is taken 
at the point of inflexion of mSt. The hysteresis width may be a convenient measure of the 
degree of first-order character since it decreases monotonically when one goes towards 
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Figure 2. Phase diagram in the TH plane 
for (Y = -0.5 at various values of p. 0, 
results of runs with fixed H; *, results of 
runs with fixed T.  First- and second-order 
critical lines are shown by broken and full 
curves, respectively. Results at p = 0 are 
taken from [15]. Inset: tricritical tem- 

0 perature as a function ofp.  

Figure 3. Tricritical temperature T, versus (Y obtained by MC 
simulations. Vertical bars indicate errors. The full curve is a 
guide to the eye. 

second-order regions in the TH plane. For a given p we look for the critical points at 
various values of Hand  T. In the first-order region we measure the hysteresis width and 
the tricritical point is taken where this width goes to zero by extrapolation. An example 
a t p  = 0.2 has been shown in [ll]. The resulting phase diagram a t p  = 0.1,0.2, and 0.3 
for a = -0.5 is shown in figure 2 where the results of Landau [15] for p = 0 are also 
presented. In the inset of figure 2, we show the tricritical temperature Tt as a function 
ofp.  It is observed that Tt decreases strongly with increasingp. 

We note that at p = 0.3 the full AF order is often broken into domains of AF order. 
This is seen in runs with high temperature F initial spin configurations: below the 
transition the staggered magnetisation obtained upon cooling can be smaller than that 
obtained by heating from AF initial configurations. This effect is not due to metastability, 
since the local Edwards-Anderson order parameter in runs with F and AF initial con- 
ditions are identical within statistical errors. 

We have also obtained the phase diagram in the T a  plane forp = 0.2 shown in figure 
3. The tricritical temperature Tt decreases linearly with increasing a. We could not 
accurately determine the value of a for which the tricritical point disappears. This is due 
to the well known difficulty with MC simulation at very low temperatures. We think 
however that this value is close to -0.2 (by extrapolation). Note that the critical value 
obtained from mean-field theory for the disappearance of the tricritical point in the non- 
dilute case [16] is a = -0.3. 
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3. Probabilistic mean-field theory 

To discuss the above results, we present a new mean-field calculation. A classical mean- 
field treatment of the Hamiltonian (1) with no dilution (i.e. , p  = 0) leads to the equation 
of state [16] 

m = sinh[2P(H - Gm)]/{cosh[2P(H - am)] + cosh[2P(HS + yms)]} (2) 

and 

m, = sinh[2P(Hs + yms)]/{cosh[2P(H - am) + cosh[2P(H, + ym,)]} (3) 

where /3 = l/kBT, m = (ma + m,)/2, m, = (ma - m,)/2, indices a and b denote the two 
sublattices of staggered symmetry, y = CJ + azJ ,  6 = CJ - azJ ,  c is the number of NN, 
z the number of NNN, and H, a staggered field defined by H, = ag( T ,  H ,  m,)/am, with 
the free energy given by 

g(T ,  H ,  m,) = go(T, H )  + am: + bm; + cm: (4) 

with a, b, c being the Landau coefficients of an expansion in powers of the order 
parameter m,. 

We now present a probabilistic mean-field model. Since mean-field theory is a one- 
site approach, once dilution is introduced the various one-site configurations of the 
dilute problem should be included. There exist 7 X 13 = 91 configurations, depending 
on the respective numbers of both NN and NNN. We define these configurations through 
the variables yn,/  and an,/ 

with the probability 

C! Z !  (1 - P ) n + / p c + z - n - /  
n!(c - n)! Z!(z - Z)! P n , /  = 

The equations of state (2) and (3) become averages of equations of state over the 
various configurations (5 ) .  We obtain 

z c  

and 

c z  

It should be noted that m,(P, H ,  m, m,, yo,o, = 0 due to the staggered symmetry 
of the problem. From equation (7) the Curie temperature at H = 0 is found to be Pc = 
by)-', which is the correct mean-field result. Expanding the above expressions in 
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Figure 4. The tricritical temperature obtained by 
the probabilistic mean-field equations (8) and (9) 
as a function ofp at LY = -0.5. 
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Figure 5. Mean-field tricritical temperature as a 
function of CY a t p  = 0.2. 
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powers of m, and using equation (4) we found a tricritical point when a = b = 0. The 
location of the tricritical point is given by 

and 

and 

The values of tricritical temperatures obtained from equations (8) and (9) are shown 
in figure 4 as a function of dilution p .  Note the good qualitative agreement with MC 
results shown in the inset of figure 2. Figure 5 shows TI as a function of a. The linear 
dependence of Tt on a is observed again here as in figure 3. Note, however, that for CY 2 
-0.4 no solution of equations (8) and (9) is found and there is a discontinuity at a = 
-0.4. 

4. Conclusion 

In conclusion we have shown that both NNN interactions and the dilution concentration 
can drastically change the phase diagram of the dilute Ising antiferromagnet in a magnetic 
field. Therefore, phase diagrams obtained in experiments for various systems may 
exhibit quite different features. For a given experiment, a tricritical point will thus either 
be expected or  not expected depending on the actual values of both p and a. We have 
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also shown that results of MC simulations can be reproduced qualitatively by a very 
simple mean-field model. 
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